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Three-dimensional theory of an ion-ripple laser
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We develop a three-dimensional theory of the ion-ripple laser by using a consistent set of wave and
pendulum equations to characterize the coherent radiation in the fundamental and harmonic frequen-
cies. The small-signal gain is obtained by an eigenmode analysis. The optical-guiding effects on the har-
monic generation in the linear regime are discussed. Under proper conditions, the ion-ripple laser may
provide a practical source of microwaves, light rays, and even x rays.

PACS number(s): 41.60.Cr, 52.40.Mj, 52.75.Ms

I. INTRODUCTION

Research on tunable high-power coherent radiation
sources ranging from the far infrared to ultraviolet has
been a subject of growing interest. A promising candi-
date, the free-electron laser (FEL), has been theoretically
analyzed [1,2] and experimentally demonstrated [3,4].
However, because of technological limitations of wiggler
wavelengths and magnetic-field strength, the convention-
al FEL requires a very-high-energy (e.g., about 1 GeV)
electron beam to produce short-wavelength radiation
(e.g., ultraviolet), but operates there with low efficiency.
Although some nonconventional FEL’s [2] can provide
shorter wigglers, the wiggler field is not steady or intense
enough. To overcome these difficulties, Chen and
Dawson recently proposed an alternative scheme [5], the
ion-ripple free-electron laser (IRL), consisting of a rela-
tivistic electron beam (REB) injected into an unmagnetic
performed plasma ripple at an angle 6. The IRL makes
use of the charge neutralization to transport the beam
and a resonance, akin to that of the planar wiggler FEL,
to produce coherent radiation. Here, the wiggler field is
provided by the electrostatic field of the ion ripple. Com-
pared to conventional or nonconventional FEL’s, the
IRL appears attractive because its wiggler wavelength
can be shorter and easily adjusted; the ion-ripple field
field is steady and very strong and there is no need for an
external magnetic system.

In a one-dimensional theory of the IRL [5], the linear
dispersion relation for the wave coupling of the funda-
mental frequency for the IRL was derived from fluid
theory, and was used to calculate the radiation frequency
and linear growth rate. In this paper, we present a
three-dimensional theory to describe the coherent radia-
tion in the fundamental and harmonic frequencies of the
IRL based on the Lorentz equation and the Maxwell
equations. The main emphasis of this paper is on the role
of the diffraction in the small-signal high-gain regime. In
an IRL, there exist two mechanisms of optical guiding,
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which will be labeled as “plasma guiding” and “self-
focusing.” The former one, “plasma guiding,” refers to
the guiding of the optical beam by a waveguide, consist-
ing of the beam channel and the surrounding plasma;
here the channel has a higher dielectric constant than the
surrounding plasma because of the relativistic mass in-
crease. The latter one refers to self-similar propagation
of the optical wave around a fiber with an effective com-
plex index of refraction, because of the bunching on the
optical wavelength due to the resonant coupling between
the optical field and the REB [6-8]. The present paper is
organized as follows: first, a general description of an
IRL is given in Sec. II; in Sec. III, a consistent set of
wave and pendulum equations for three-dimensional
IRL’s have been derived from the relativistic Lorentz
equation and the Maxwell equations; in Sec. IV, an eigen-
mode analysis of an IRL is presented; the gain of the fun-
damental mode LP,, is analyzed in Sec. V; the higher-
harmonic generation in an IRL is discussed in Sec. VI;
finally, a conclusion is given in Sec. VIL.

II. GENERAL DESCRIPTION
OF AN ION-RIPPLE LASER

The IRL generally requires a mechanism to produce a
plasma ripple. The methods for producing plasma ripple
involve the modulation of the density of the neutral gas
in a tank and then the ionization of the modulated gas by
a laser pulse [9], or the excitation of an ion acoustic wave
in an unmagnetic performed plasma [10], etc. As the
beam propagates through the plasma ripple, it expels
plasma electrons from the beam volume in response to
the space charge. When the beam density n, is equal to
or higher than the plasma electron’s density n,, all plas-
ma electrons are expelled from the beam path, creating
an ion-ripple channel and a plasma cladding [11]. Since
the time scale of interaction is much shorter than that of
the ion motion, the ion ripple will be seen as a stationary
wiggler by the beam electrons. As we neglect the col-
lisions of the plasma electrons and the axial and radial (r)
variation of density of the plasma cladding, the channel
and the plasma cladding serve as a dielectric waveguide,
which is known as a plasma waveguide [12].
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We take the density of the ripple to be n;=ny[1
+€gcos(kg r)], where €z is the perturbation ripple
density, and ki is the wave vector of the ion ripple. To
reach effective higher-frequency lasing, it may be advan-
tageous to operate at the short-wiggler-wavelength
domain, which is defined as k <<y}’?, where y, is the ini-
tial Lorentz factor of the beam electrons, and k =k, /k,,
with k, =kgcos(6) and k,=w, /c [c is the speed of
light, w,, =(4mnye’/m, )'/2 is the plasma frequency with
m, and e bemg the rest mass and charge of the electrons,
respectively]. In this case, the ion-ripple field is much
stronger than the self-field on the beam, so then the elec-
trostatic instability [13], which may be excited in the ion
ripple, will be avoided. For simplicity, we neglect the
effects on the self-field and the transverse (%,§) variation
of the ion-ripple field on the beam electrons. As a result,
the electrostatic field experienced by the beam electrons
can be expressed by

dmnge

Egx=— €;sin(k,z)[X sin(6)—Z cos(6)] , 2.1

u

where €; =€gcos(0) is the fractional ripple of ion density
(we have assumed that the beam density is equal to or
higher than the average plasma density). To avoid the
“ion-hose” instability [14] and the “‘electron-hose” insta-
bility [15], we will keep the average plasma density nearly
the same as the unperturbed density of the REB (i.e.,
No=Hny).

The equilibrium trajectories of the REB moving in the
ion-ripple field are determined by the Lorentz equation.
By using Eq. (2.1), one obtains the following, with the as-
sumption that the slow time scale solutions are approxi-
mately constant on the fast time scales

V2K

B.=— cos(k,Z) , (2.2)
Yo
_  K?
B,=B.— ——cos(2k,z) , (2.3)
270
where Z(#)=p,ct is the axial location assuming the elec-

tron has uniform axial velocity B,=1—1/2y31+K?),
and K =«%¢;sin(0)/V'2 represents the wiggler strength
for the IRL. These expressions for v are valid to order
(K /y4)*. It should be noted that the transverse fast oscil-
lations given in Eq. (2.2) are the source of the energy
needed to produce the electromagnetic radiation [16],
and the additional longitudinal (Z) fluctuations (2k,) in
Eq. (2.3) may cause emission into higher harmonics and
reduce the gain of the fundamental [17].

III. BASIC EQUATIONS OF AN ION-RIPPLE LASER

In the presence of a REB, the ion-ripple field couples
to a high-frequency radiation wave. The vector potential
of the linearly polarized radiation field is taken to be

2

m,
A= ke E expli(kz —wt)]e, +c.c. , (3.1

where E; is the complex radiation amplitude, and & and
k are respectively the frequency and axial wave number

of the radiation. The radiation fields satisfy the wave
equation

Vi——— |A=—""7, (3.2)
C

where J is the driving current density associated with the
medium, and € denotes the partial dielectric constant,
which is given by

e=1—uwf,e/w27/o—ﬁwﬁe/w2 , (3.3)
with the step function u =1 for r <ry, u =0 for r>r,
and 7 =1—u; here r; is the channel (or beam) radius.
Usually, the paraxial approximation is employed for the
analysis of the coherent emission from FEL’s [18].
Within the confine of this approximation, and employing
the calculational technique, which was exploited earlier
to evaluate the gain in higher-FEL harmonics [17], Eq.
(3.2) may be reduced to

k2 +2ik-% |E, = VakksK JJIC i§,))
U+ 2k— |E = e u[JJ])(exp(—i§,)) ,
(3.4)
where £, =(k +nk,)z—wt is the ponderomotive phase

for the nth harmomc frequency with the harmonic num-
ber n =1,3,5, . ... The symbol { ) indicates an ensemble
average in the electron’s longitudinal phase space. The
factor [JJ] clearly represents the effects of the longitudi-
nal fast oscillation on the stimulated emission in an IRL
as well as that in a FEL, which is defined as

N=(=1)""2J 1y p(no)=J 41y p(no)],

(3.5)

where 0 =K?/2(1+K?) denotes the interaction strength
of the IRL, and J,, is the Bessel function of the first kind
and nth order. Introducing dimensionless parameters
=k,Z, r—-\/2kk 7, andk =k /\/Zkku, . (3.4) may
be rewritten as

z
u[JJ]exp(—i&,))

\/Zyok
(3.6)

When the number of the ion-ripple periods N >>1, the
evolution of the ponderomotive phase is determined by

d’ d

=2 (3.7
d2§,. e Y, 3.7)

where v, represents the energy detuning for the nth har-
monic frequency. In Eq. (3.7), the change of electron en-
ergy with time is governed by the Lorentz equation

d

- (3.8)
dt al’T

where E is the electromagnetic vector with the following
relation between the field and the potential E
=—09A /cdt. On using Egs. (3.1), (3.7), and (3.8), we
could get the pendulum equation after performing aver-
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ages over one or several optical wavelengths

d? . KE; :
ﬁ&, =lmn [JT]exp(i€,)+c.c.

u

(3.9)

Together with Egs. (3.6) and (3.9), the self-consistent
wave and electron equations of motion yield a powerful
formulation for the three-dimensional IRL problem,
which are valid in weak and strong optical fields, as well
as for small or high gain. If we neglect the effects of the
plasma waveguide in an IRL, these equations are similar
with the well-known FEL results [6-8].

IV. LINEAR ANALYSIS OF AN ION-RIPPLE LASER

We now proceed to solve Egs. (3.6) and (3.9) in the
small-signal regime. Under small-signal conditions, the
reference to the individual electron phase can be explicit-
ly removed by combining Egs. (3.6) and (3.9). Then, one
obtains

Vi-k

[l 5

4.1)

where E; and T are defined as

E,=E,expliv,7), I= ["dr Hd‘r”Es('r"), 4.2)
s 0 0

with the initial condition I(r=0)=0, and dI/
d7(7=0)=0, and the dimensionless current j, is given by
Kk€%sin%(9) X
= nlJ]". 4.3)
Yo

Following Xie, Deacon, and Madey [6], one can rewrite
Eq. (4.1) as a Schrodinger equation

i y=pgv, 4.4)
dr

with non-Hermitian Hamiltonian

0 1 0
H=|{0 —-L, 1], 4.5)
L, 0 O
and the vector solution
—idl /dr
v=| E , (4.6)

where L,=[V}—klu]+v, and L,=uj,. Equation
(4.4) is the governing equation for the evolution of both
the optical field and the modulation of the REB. It
defines a linear eigenvalue problem by HV=AV. Since
the function u and # depend only on the transverse spa-
tial (r), the solution of Eq. (4.4) is self-similar [7]. The
term “‘self-similar” refers to the fact that the transverse
dependence of the mode is independent of the axial coor-
dinate z. In the high-gain regime, the fast growing mode
Y(7)=V,exp(—iA;7), Im(A;)>0 grows to dominate over
all other modes, where V, is defined as

At

Vi=i 1 ,
2uj, A ?

4.7)

where A, is the generally complex propagation constant,
and the transverse profile ; obeys the mode equation

(Vi—k2a+A+v,—uj, /A 1¢,=0. (4.8)

The evolution of the coupling system can be solved as
an initial problem defined by Eq. (4.4) along with the ini-
tial condition. Because the Hamiltonian H in Eq. (4.5) is
not Hermitian, the eigenmodes of Eq. (4.8) are not or-
thogonal to each other. However, according to the
biorthogonality theorem [19], the eigenfunctions ¥V, of H
are orthogonal to the eigenfunctions V,T of the adjoint
operator H 7, which is

VIV ) =Ny N=([1+2uj, A7’ W} . @4.9)

Therefore, a general solution ¥ to the initial value prob-
lem can be expressed as a linear superposition of all self-
similar modes. The vector W has three components
which are known as the velocity bunching amplitude, the
optical field amplitude, and the density bunching ampli-
tude, respectively. Here, we focus our attention on the
optical component, which describes the aspects of an IRL
operation associated with energy exchange. Thus, the
optical field may be expressed by

E,=3 1 (E(00) exp(—ikyr) (4.10)
TREAY]

The gain of an IRL may be obtained as G
=Goexp[2Im(A;)7r], and the input power cou-
pling coefficient G, is given by [6] G,
=|(E,(0)¢;)|>(|E,(0)|*). It shows that the power cou-
pling G, depends on the input optical field as well as the
mode of the transverse profile. While the eigenvalues A,
for a given system are fixed, the power coupling G, varies
about the profile of the input optical field. According to
previous work [6,7], the maximal value of G, is reached
with E (0)=y}, which is G, = |¢,|*)2/|N,|2.

V. GAIN OF THE SELF-SIMILAR MODE

Since u(r) is a sharp-edged distribution of radius 7,
the eigenfunction of Eq. (4.8) may be expressed in terms
of Bessel functions and Hankel functions. We consider
the axial symmetric guided mode, for which

Jo(x7/a) for 7<a,

Y(7) (5.1

- DH,(x,7/a) for 7>a ,

where the constant D=J,(x)/Hy(x,), a=1"2kk,r,,
and H, is the Hankel function of the first kind and zeroth
order. The complex parameters y and X, are determined
by the equations

xJo(x) _ X,Holx,)
ToX)  Hylx,)

X =xi=b-T,b’xt+b—»,)2=v?, (5.3)

n, (5.2)
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FIG. 1. Filling factor F, (a), and the power
coupling coefficient G, (b) are plotted as a
function of b for different T',, T, =1, 10, 10?,
10%, 10*,
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The parameters ¥, =a’v,, and 3=k;r(2) ~=4(1, /I ,), with
I, being the beam current and I ,=m,c*/e ~17 kA be-
ing the Alfvén current.

It is worthwhile, at this point, to examine some impor-
tant features of the eigenmode by contracting it with the
LP, mode in a fiber [20]. Obviously, the eigenmode de-
scribed by Eqgs. (5.1)-(5.3) is similar to the LP;, mode in
fiber, where the quantity ¥V is called the ‘“fiber parame-
ter.” The condition for mode cutoff in a fiber is y, —0.
Formally, there is no cutoff for the LP,; mode corre-
sponding to the first solution of Egs. (5.2) and (5.3), which
is expected to be the dominant mode for an IRL.

The growth rate could be expressed by

n*JJ? . (5.4)

Vv
gn—Im(x,,>=T3Fn REEIN (5.5)
with
F,=2Im(x})/V3rY?% . (5.6)

The factor F, clearly represents the effects of the optical
guiding on the growth rate, which may be understood as
a filling factor in the IRL. With the choice of initial field
E(0)=~19*, the input power coupling coefficient G, may
be obtained as [7]

Gy=T§/IN,I*, (5.7)
where
To=a?l 1) "m* =) | 5y — —
"=x*) G —x")
(5.8)
2 2
a ~
No="-7300) 20,500 +6—9,) 1+%
2
+1-L (5.9)
Xp
1 @ 1 @
O75j UDB—-‘
F, n Go -
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It shows that the filling factor F, and the power coupling
G, are dependent upon the parameters ', and b. The
effects of the optical guiding on the gain of the coherent
radiation are better clarified by Fig. 1, in which we com-
pare thAe factor F, and the initial power coupling G,
versus b for different ', with the effective detuning ¥,
being chosen to the maximize F,. Our numerical results
turn out that the maximum gain occurs for a positive
value of the energy detuning. As the energy detuning is
smaller than the radiation frequency, the resonant fre-
quency is approximately given by

©=2ny}krecos(8)/(1+K?), (5.10)

for the nth harmonic.

Besides the transverse localization of the optical beam
extent, the plasma waveguide diminishes any convective
loss of radiation energy and enhances the gain of the
IRL. In the limit of I', >>1 and low beam current
b <<1, the effects of the plasma waveguide may be negli-
gible, and the “‘self-focusing” dominate the optical guid-
ing. In this case, Eq. (5.3) will be reduced to

’'=v;—C,(xa—%,)"?, (5.11)

with 6‘n =I“,,l?3, which is similar to the FEL form dis-
cussed by Moore [7]. The transverse /proﬁle of the self-
similar optical field is governed by C,. For the LP,
mode to be considered guided, we require the 1/e point
of the electromagnetic wave to be within 5 times the
channel radius a. This condition corresponds to demand-
ing that |[Re(V?)| + [Im(¥?)| > 2.4 [8].

As 6,, is proportional to (y,l, )3, the transverse profile
¥, the filling factor F, and the power coupling coefficient
G, depend on y,l, rather than the beam current I.
Different from the FEL problem, the gain of the IRL is
independent of the radius of the beam r, as the gain of
the FEL is sensitively dependent upon r, [6—-8]. In Fig.
2, we plot the filling factor F, and the power coupling
coefficient G, versus 6,, where the effective detuning 9, is
chosen to maximize F,. For small C,, the filling factor
F, and the power coupling G, are much smaller than the

FIG. 2. Filling factor F, (a), and the power
coupling coefficient G, (b) are shown as a func-
tion of the parameter C, in the “self-focusing”
domain.

10 1000
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one-dimensional results, since radiated light would rapid-
ly diffract out of the electron beam before it could be-
come very amplified. For large @,, (e.g., 6,, >10?), the
diffractive effects may be relatively unimportant, and the
optical field is strongly trapped in the beam volume.
Therefore, the filling factor F, and the power coupling
G, approach the one-dimensional value 1 and {, respec-
tively.

V1. HIGHER-HARMONIC GENERATION
IN AN ION-RIPPLE LASER

In Sec. V, we have studied the gain of the IRL in the
small-signal high-gain regime, and our analysis shows
that the growth rate g, is proportional to the dimension-
less current j!/® and the filling factor F,. It can be seen
from Eq. (4.3) that it requires a higher « (i.e., w,, >>k,c)
to obtain higher gain for a fixed REB. This is something
of a disadvantage. As j, ~n[JJ]% there exists a lot of
harmonic emission for k>>1. Thus, to reach a higher
frequency with high gain, it may be advantageous to
operate at higher harmonics.

However, harmonic operation has often been limited
by problems of mode competition, insufficient gain, and
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FIG. 3. Filling factor F, (a), the power coupling coefficient
G, (b), and the growth rate g, are plotted as a function of
n/(1+K?) for K =10, 15, 20, 25, 30.

low efficiency, which get worse with increased harmonic
number. Thus, harmonic IRL operation generally re-
quires a mechanism that selectively enhances the com-
petitiveness of a desired harmonic, such as is done for the
FEL. A few methods for harmonic selection have been
proposed in FEL operation. For example, resonantor
tuning [4], wiggler-field tapering [21], signal injection
[22], periodic positioning interaction [23], etc. These
methods may be employed to make a realizable harmonic
operation in an IRL.

In this paper, we propose an alternative mechanism —
the diffraction loss to suppress the gain of the fundamen-
tal and the lower harmonics, making it possible to have
higher-harmonic operation. In the “self-focusing”
domain, the filling factor F, and the power coupling G,
are only governed by the parameter é,,, which is propor-
tional to n*[JJ]%. It indicates that F, and G, are both
different for different harmonics. Under proper condi-
tions, the optical field of the higher harmonics may be
strongly localized, resulting in a higher gain, but the opti-
cal wave of the fundamental and the lower harmonics ex-
tend far outside of the beam leading to a much lower
gain. The effects of the optical guiding on higher-
harmonic generation is better clarified by Fig. 3, in which
we compare the F,, G,, and g, as a function of
n/(1+K?) for K =10,15,20,25,30 together with their
magnitude with y,=1000, b =0.01, €;sin(6)=0.1. Obvi-
ously, the growth rate of the fundamental and lower har-
monics may be suppressed by diffraction loss and then
the gain of higher harmonics may be higher. This gives a
possibility of higher-harmonic operation.

VII. CONCLUSION

In this paper, we presented a three-dimensional theory
of an ion-ripple laser. Based on the Lorentz equation and
the Maxwell equations, we developed a consistent set of
wave and pendulum equations to describe the coherent
radiation in fundamental and odd harmonic frequency in
an IRL. The gain of the self-similar mode for an IRL
was obtained by an eigenmode analysis in the weak-field
and high-gain regimes. Our results show that the emis-
sion frequency is peaked at w=2ny3kzc cos(8)/(1+K?)
for the nth harmonic. Moreover, we discussed the poten-
tial of higher-harmonic operation in an IRL. It is found
that the effects of the diffraction loss could reduce the
gain of the fundamental and lower harmonics, and make
possible higher-harmonic operation.

The optical-guiding effects are dependent upon the pa-
rameters I', and b. In the limit of T, >>1 and low
current b <<1, the “self-focusing” dominates the optical
guiding. In this case, a dimensionless parameter @,, is in-
troduced to determine whether diffraction is important.
For small én, the diffraction loss is important, and the
gain is much smaller than that of the one-dimensional re-
sults. For é,, > 10?, the diffraction loss is negligible, and
the gain approximately equal to the one-dimensional
value.

Because of the effects of the optical guiding, it is possi-
ble to direct and focus the IRL-generated optical beam.
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Furthermore, since the ion ripple can be created with
very short wavelength, and with the potential of higher-
harmonic operation, we expect that the IRL is a realistic
means for generating short-wavelength tunable coherent
radiation. It would appear to be possible to produce tun-
able uv and soft x rays from an IRL.

In conclusion, to take account of the optical-guiding
effects in our analysis we have assumed that the electron

transverse oscillation scale is smaller than the radial
length structure (i.e., k’¢;sin(0) << yogl/z), so that the
effect of the REB bending due to the finite radius of the
electron wiggling may be neglected. Adding the wiggling
motion will decrease gain and increase transverse dimen-
sions [24]. However, these effects are significant only for
K€ sin(0) >> 7/051/2. Therefore, the smooth boundary ap-
proximation in our analysis is valid enough.
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